Lattice Gauge Theory

Frithjof Karsch, BNL&Bielefeld

OUTLINE:

- lattice regularization and continuum limit
- QCD close to the chiral limit, O(N) scaling, phase diagram
- finite density QCD moments of charge fluctuations as probe for for proximity to criticality

Phases of strongly interacting matter

existence of a critical point

Phase diagram for $\mu_B \geq 0, \ m_q > 0$

Does freeze-out occur close to a critical point?

critical line at m_q=0

$$rac{T_c(\mu_B)}{T_c} = 1 - \kappa_B \left(rac{\mu_B}{T}
ight)^2 - \mathcal{O}(\mu_B^4)$$

- crossover line physics on crossover line controlled by universal scaling relations?
 - freeze-out line Is the crossover line related to the experimentally determined freeze-out curve?

Critical behavior in hot and dense matter QCD phase diagram & chiral limit

Phase diagram for $\mu_B=0$

drawn to scale

Is physics at the physical quark mass point sensitive to (universal) properties of the chiral phase transition?

physical point may be above $\mathbf{m}_{\mathbf{s}}^{\mathbf{crit}}$

$$n_f = 3$$
: $m_{\pi}^{\text{crit}} \lesssim 70 \text{ MeV}$

Nt=4, 6: improved actions FK et al., NP(Proc.Suppl) 129 (2004) 614 G. Endrodi et al, PoS LAT 2007 (2007) 182 (also Nt=6 standard staggered)

Phase transition in 3-flavor QCD

H.-T. Ding et al, in preparation

Phase diagram for $\mu_B \neq 0$

consequence for the discussion on the existence or non-existence of a critical point:

The bending of the surface on the Z(2) boundary at the nf=3 line seems to be of little importance for the physical region?

Symmetries and the chiral phase transition

$$U_V(1) imes U_A(1) imes SU_L(n_f) imes SU_R(n_f)$$

$$ar{\psi}\mathcal{M}\psi \sim ar{\psi}_L \mathcal{D}_{\mu}\psi_L + ar{\psi}_R \mathcal{D}_{\mu}\psi_R - m_q(ar{\psi}_L\psi_R + ar{\psi}_R\psi_L)$$

$$egin{aligned} U_V(1): ext{ baryon number} & \psi^\Theta = \mathrm{e}^{i\Theta}\psi \;,\; ar{\psi}^\Theta = ar{\psi}\mathrm{e}^{-i\Theta} \ & U_A(1): ext{ axial symmetry} & \psi^\Theta = \mathrm{e}^{i\Theta\gamma_5}\psi \;,\; ar{\psi}^\Theta = ar{\psi}\mathrm{e}^{i\Theta\gamma_5} \ & SU_{L,R}(n_f): ext{ flavor symmetry} & \psi'^i_{L/R} = G^{ij}_{L/R}\psi^j_{L/R} \ & [G_{L/R} \in U(n_f)] & ar{\psi}'^j_{L/R} = ar{\psi}^i_{L/R}G^{\dagger,ij}_{L/R} \ & \psi \equiv (\psi^u,\psi^d,..) \end{aligned}$$

Symmetries and the chiral phase transition

$$U_V(1) imes U_A(1) imes SU_L(n_f) imes SU_R(n_f)$$

$$\bar{\psi}\mathcal{M}\psi \sim \bar{\psi}_L \mathcal{D}_{\mu}\psi_L + \bar{\psi}_R \mathcal{D}_{\mu}\psi_R - m_q(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L)$$

symmetry breaking pattern: 3-d effective theory for the order parameter

R. Pisarski, F. Wilczek, PRD29 (1984) 338

If UA(1) is "effectively" restored at Tc, it may trigger a first order phase transition

Order parameter: chiral condensate

Is "nature" sensitive to physics in the chiral limit?

A. Bazavov et al. (hotQCD), PRD85 (2012) 054503

O(N) scaling and chiral transition

close to the chiral limit thermodynamics in the vicinity of the QCD transition is controlled by O(4) scaling functions:

$$rac{p}{T^4} = rac{1}{VT^3} \ln Z(V,T,ec{\mu}) = -h^{1+1/\delta} f_s(t/h^{1/eta\delta}) - f_r(V,T,ec{\mu})$$

- critical behavior controlled by two relevant fields: t, h
 - all couplings that do not explicitly break chiral symmetry contribute in leading order only to 't'

$$t = rac{1}{t_0} \left(\left(rac{T}{T_c} - 1
ight) - \kappa_{m{q}} \left(rac{\mu_{m{q}}}{T}
ight)^2
ight) \hspace{0.5cm} h = rac{1}{h_0} rac{m_l}{m_s}$$

K. G. Wilson, Nobel prize, 1982

O(N) scaling and chiral transition

thermodynamics in the vicinity of a critical point:

$$rac{p}{T^4} = rac{1}{VT^3} \ln Z(V,T,ec{\mu}) = -h^{1+1/\delta} f_s(t/h^{1/eta\delta}) - f_r(V,T,ec{\mu})$$

- critical behavior controlled by two relevant fields: t, h
 - all couplings that do not explicitly break chiral symmetry contribute in leading order only to 't'

$$t = rac{1}{t_0} \left(\left(rac{T}{T_c} - 1
ight) - \kappa_{m{q}} \left(rac{\mu_{m{q}}}{T}
ight)^2 - \kappa_{m{s}} \left(rac{\mu_{m{s}}}{T}
ight)^2 - \kappa_{m{qs}} rac{\mu_{m{q}} \mu_{m{s}}}{T^2}
ight)$$

$$h=rac{1}{{\color{red}h_0}}rac{m_l}{m_s}$$

3 unique scales at vanishing chemical potential

3 additional, unique scales at non-vanishing chemical potential: curvature of the critical surface

Order parameter: chiral condensate

Is "nature" sensitive to physics in the chiral limit? Is the order parameter controlled by the universal, singular part of the free energy? $^{14}_{^{5}}L/\langle \psi ar{\psi}
angle^{2}_{^{6}} w$ 14 HISQ/tree: $N_{\tau} = 8$, O(4) $m_{\pi}[MeV]$ 160 $m_1 / m_s = 0.050$ 0.037 -----140 "nature" 0.025 130 M_b T [MeV] cartoon: 130 140 150 160 170 180 190 200 210 220 230 240 250 chiral limit $f_G(z) = -(1+rac{1}{\delta})f_s(z) + rac{z}{eta\delta}f_s'(z)$ $M_b = rac{\partial p/T^4}{\partial m_l/m_s} = rac{1}{h_0} h^{1/\delta} f_G(z)$ + regular, $z = t/h^{1/\beta\delta}$

Critical exponents

order parameter, h=0:
$$\langle \bar{\psi}\psi
angle \sim (T_c-T)^eta$$
 t=0: $\langle \bar{\psi}\psi
angle \sim m_l^{1/\delta}$

specific heat, h=0:
$$C_V \sim |t|^{-lpha}$$

correlation length, h=0:
$$\xi \sim |t|^{-\gamma}$$

3-d, O(4) critical exponents:
$$eta=0.380\ ,\ \delta=4.824\ ,$$
 $lpha=-0.2131$ $ightharpoonup lpha<0$

scaling relations:
$$2-lpha = eta(1+\delta)$$
 $\gamma = eta(\delta-1)$

specific heat does not diverge in O(N) symmetric theories

Scaling properties of higher order cumulants and bulk thermodynamics

fluctuations

Taylor expansion of the pressure

$$rac{p}{T^4} = \sum_{n=0}^{\infty} rac{1}{(2n)!} \chi_{B,0}^{(2n)}(T) igg(rac{\mu_B}{T}igg)^{2n} \qquad rac{p}{T^4} = -rac{f}{T^4} = rac{1}{VT^3} \ln Z$$

quark number susceptibilities

$$\chi^B_{2n} = \left. \frac{1}{VT^3} \frac{\partial^{2n} \ln Z}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} \qquad \frac{\epsilon}{T^4} = \frac{1}{VT^3} \frac{\partial \ln Z}{\partial T}$$

bulk thermodynamics

free energy, pressure

$$rac{p}{T^4} = -rac{f}{T^4} = rac{1}{VT^3} \ln Z$$

energy density, specific heat etc.

$$rac{\epsilon}{T^4} = rac{1}{VT^3} rac{\partial \ln Z}{\partial T}$$

$$\sim -h^{(2-lpha-n)}f_s^{(n)}(z)$$

$$+rac{\partial^{f 2n}f_r(T,V,ec{\mu})}{\partial(\mu_B/T)^{f 2n}}igg|_{ec{\mu}=0}$$

$$\left. + rac{\partial^n f_r(T,V,ec{\mu})}{\partial T^n}
ight|_{ec{\mu}=0}$$

Scaling properties of higher order cumulants and bulk thermodynamics

fluctuations

Taylor expansion of the pressure

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{B,0}^{(2n)}(T) \left(\frac{\mu_B}{T}\right)^{2n} \qquad \frac{p}{T^4} = -\frac{f}{T^4} = \frac{1}{VT^3} \ln Z$$

quark number susceptibilities

$$\chi_{2n}^B = \left. \frac{1}{VT^3} \frac{\partial^{2n} \ln Z}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} \qquad \frac{\epsilon}{T^4} = \frac{1}{VT^3} \frac{\partial \ln Z}{\partial T}$$

bulk thermodynamics

free energy, pressure

$$rac{p}{T^4} = -rac{f}{T^4} = rac{1}{VT^3} \ln Z$$

energy density, specific heat etc.

$$rac{\epsilon}{T^4} \;\; = \;\; rac{1}{VT^3} rac{\partial \ln Z}{\partial T}$$

$$\sim -h^{(2-lpha-n)}f_s^{(n)}(z)$$

diverges at Tc for m=0 only for n≥3

3d, O(4) scaling function; derivatives of free energy scaling function

3-d, O(4) scaling functions

J. Engels, FK, arXiv:1105.0584

Higher order cumulants of charge fluctuation

higher moments (e.g. 6th order) are drastically different in QCD close to criticality and in a hadron resonance gas, e.g.

$$rac{\mu_B=0}{\chi_{B,0}^{(6)}} = \left\{egin{array}{l} = 1 \ < 0 \end{array}
ight.$$
 , hadron resonance gas

LGT: $16^3 \times 4$ (p4)

PQM model

PQM model and LGT calculations reproduce expected O(4) scaling structure

B. Friman et al, arXiv:1103.3511

Energy density vs. quark number susceptibility

$$egin{align} \chi_2^B &= \left. rac{1}{V T^3} rac{\partial^2 \ln Z}{\partial (\mu_B/T)^2}
ight|_{\mu_B=0} \ &\sim \left. -h^{(1-lpha)} f_s'(z)
ight. \ &\left. + rac{\partial^2 f_r(T,V,ec{\mu})}{\partial (\mu_B/T)^2}
ight|_{ec{\mu}=0} \end{aligned}$$

Chiral condensate (2+1)-flavor QCD

- lacktriangledow Goldstone modes dominate quark mass dependence of the chiral order parameter for $T \lesssim T_c \Rightarrow \langle \bar{\psi}\psi \rangle_l \sim m_l^{1/2}$
- analog of chiral logs at T=0

p4-action: $N_{\sigma}^3 imes 4$, $N_{\sigma}=8$ - 32

S. Ejiri et al (BNL-Bielefeld), Phys. Rev. D80, 094505 (2009)

Magnetic Equation of State (2+1)-flavor QCD

scaling of the chiral order parameter:

$$M_b \equiv rac{m_s \langle ar{\psi} \psi
angle_l}{T^4} \;\;,\;\; z \equiv t/h^{1/eta \delta}$$

O(2) vs. O(4) $z \to 1.2z$

p4-action:
$$N_{\sigma}^3 imes 4$$
 , $N_{\sigma}=16,\ 32$

S. Ejiri et al (BNL-Bielefeld), Phys. Rev. D80, 094505 (2009)

Magnetic Equation of State (2+1)-flavor QCD

scaling of the chiral order parameter:

$$M_b \equiv rac{m_s \langle ar{\psi}\psi
angle_l}{T^4} \;\;,\;\; z \equiv t/h^{1/eta\delta} \;\; {
m for} \;\; m_l/m_s {\gtrsim} 1/20$$

scaling violations = regular contributions are significant

p4-action: $N_{\sigma}^3 \times 4$, $N_{\sigma}=16,\ 32$

S. Ejiri et al (BNL-Bielefeld), Phys. Rev. D80, 094505 (2009)

Magnetic Equation of State (2+1)-flavor QCD

scaling of the chiral order parameter:

$$M_b \equiv rac{m_s \langle ar{\psi}\psi
angle_l}{T^4} \;\;,\;\; z \equiv t/h^{1/eta\delta}$$

scaling violations = regular contributions are significant for $m_l/m_s \gtrsim 1/20$

p4-action: $N_{\sigma}^3 imes 4$, $N_{\sigma}=16,\ 32$

S. Ejiri et al (BNL-Bielefeld), Phys. Rev. D80, 094505 (2009)

physical quark masses $m_l/m_s=1/27\,{
m seem}$ to

be in the scaling regime

The curvature of the critical line

BNL-Bielefeld, arXiv:1011.3130

QCD, chiral limit (u,d quarks only)

matter density

 \blacklozenge use scaling relations to extract the curvature of $T_c(\mu_B)$

$$\mu_u = \mu_d > 0, \; \mu_Q = \mu_s = 0, \;\; \mu_B = 3\mu_q$$

The curvature of the critical line

BNL-Bielefeld, arXiv:1011.3130

"thermal" fluctuations of the order parameter

$$t \equiv rac{1}{t_0} \left(\left(rac{T}{T_c} - 1
ight) - rac{\kappa_{m{q}}}{T} \left(rac{\mu_{m{q}}}{T}
ight)^2
ight) \; , \; z = t/h^{1/eta\delta}$$

$$M_b \equiv rac{m_s \langle ar{\psi} \psi
angle}{T^4} = h^{1/\delta} f_G(z) \;\;\; ext{fixes} \;\; T_c, \; t_0, \; h_0$$

$$rac{\chi_{m,q}}{T} = rac{\partial^2 \langle ar{\psi}\psi
angle / T^3}{\partial (\mu_q/T)^2}$$

$$= rac{2\kappa_{m q}T}{t_0m_s}h^{(eta-1)/\deltaeta}f_G'(z)$$

The curvature of the critical line

BNL-Bielefeld, arXiv:1011.3130

lacktriangle "thermal" fluctuations of the order parameter determine universal curvature coefficient at small μ_q/T

$$rac{t_0 m_s \chi_{m,q}}{T^2} = \partial^2 M_b / \partial (\mu_q / T)^2 = 2 \kappa_q h^{(eta-1)/\delta eta} f_G'(z)$$

analysis for 2 values of the cut-off and 4 (1) different quark masses

$$\kappa_q = 0.059 \pm 0.006$$

compare to freeze-out curve

Chiral Transition and Freeze-out

chiral phase transition curve: t=0

freeze-out curve in heavy ion collisions:

$$rac{T(\mu_B)}{T_c}=1-0.023\left(rac{\mu_B}{T}
ight)^2-c\left(rac{\mu_B}{T}
ight)^4$$
 - non zero charge $\mu_B(\sqrt{s_{NN}})=rac{d}{1+e\sqrt{s_{NN}}}$ J. Cleymans et al.,

open issues:

- continuum limit
- strangeness conservation

J. Cleymans et al., Phys.Rev. C73, 034905 (2006)

Chiral Transition and Freeze-out

The Chiral Transition Temperature

- use three different lattice sizes (lattice spacings) to perform a continuum extrapolation
- use scaling relations to interpolate/ extrapolate to physical quark masses
- locate pseudo-critical temperature from quark number susceptibility

$$egin{array}{lll} \chi_{m,l}(T) & = & rac{\partial \langle ar{\psi} \psi
angle}{\partial m_l} \ & = & \chi_{l,disc} + \chi_{l,con} \end{array}$$

A. Bazavov et al. (hotQCD), PRD85 (2012) 054503

The Chiral Transition Temperature

 locate pseudo-critical temperature from quark number susceptibility

$$egin{array}{lll} \chi_{m,l}(T) & = & rac{\partial \langle ar{\psi} \psi
angle}{\partial m_l} \ & = & \chi_{l,disc} + \chi_{l,con} \end{array}$$

$$egin{array}{ll} rac{m_s^2\chi_{m,l}}{T^4} &=& \left(rac{1}{h_0}h^{1/\delta-1}f_\chi(z)+rac{\partial f_{M,reg}(T,H)}{\partial H}
ight) \ & ext{with} \ \ f_\chi(z)=rac{1}{\delta}[f_G(z)-rac{z}{eta}f_G'(z)]. \end{array}$$

- quark mass dependence of peak position of $\chi_{m,l}$ is a universal scaling function $T_{m,l}$ (as) $T_{m,l}$ (b) $T_{m,l}$ (c) $T_{m,l}$

$$z=z_{max} \ \Rightarrow \ rac{T_c(m_q)-T_c(0)}{T_c(0)} = c \cdot \left(rac{m_l}{m_s}
ight)^{1/eta\delta} + reg.$$

The Chiral Transition Temperature

for physical values of the quark masses scaling violations in T_c are small \iff the crossover temperature reflects chiral dynamics

$$T_c=(154\pm 8\pm 1){
m MeV}$$

Symmetries and in-medium properties of hadrons

Which symmetries are restored at Tc?

thermal hadron correlation functions

Greens functions G of quark-antiquark in different quantum number channels H, controlled by operators J

$$J_H(x) = ar{q}(x)\Gamma_H q(x)$$
 $\Gamma_H = 1, \ \gamma_5, \ \gamma_\mu, \ \gamma_\mu \gamma_5$

scalar, pseudo-scalar, vector, axial-vector

$$q(ar q)=u(ar u),\;d(ar d),....\Rightarrow$$
 $ar qq=ar uu$ flavor singlet $ar qq=ar ud$ flavor non-singlet

$$G_H(au,ec{x}) = \langle J_H(au,ec{x}) \; J_H^\dagger(0,ec{0})
angle \; \sim \; \mathrm{e}^{-m_H^{scr}|ec{x}|}$$
 screening mass

Thermal modification of the hadron spectrum

quark propagator: $ar{q}(x)q(0)=\mathrm{tr}M_q^{-1}(x,0)$

connected

$$G_{\eta}(x) = G_{\pi}(x) - \langle \operatorname{tr} \left[\gamma_5 M_l^{-1}(x,x) \right] \operatorname{tr} \left[\gamma_5 M_l^{-1}(0,0) \right] \rangle$$

$$G_{\delta}(x) = -\operatorname{tr}\langle M_l^{-1}(x,0)M_l^{-1}(0,x) \rangle$$

$$egin{array}{ll} G_{\sigma}(x) &=& G_{\delta}(x) + \langle \mathrm{tr} M_l^{-1}(x,x) \mathrm{tr} M_l^{-1}(0,0)
angle \ &- \langle \mathrm{tr} M_l^{-1}(x,x)
angle \; \langle \mathrm{tr} M_l^{-1}(0,0)
angle \end{array}$$

hadronic susceptibilities

$$\chi_{\pi} = \sum_x G_{\pi}(x) \equiv \chi_{5, ext{con}} \;\;, \;\;\; \chi_{\delta} = \sum_x G_{\delta}(x) = \chi_{ ext{con}} \ \chi_{\eta} = \sum_x G_{\eta}(x) \equiv \chi_{5, ext{con}} - \chi_{5, ext{disc}}. \ \chi_{\sigma} = \sum_x G_{\sigma}(x) = \chi_{ ext{con}} + \chi_{ ext{disc}}$$

Thermal modification of the hadron spectrum

 $T < T_c$: broken chiral symmetry is reflected in the hadron spectrum

 $T \geq T_c$: restoration of symmetries is reflected in the (thermal) hadron spectrum

$$SU(2)_L imes SU(2)_R$$
: $(\pi, \ \sigma), \ (a_1,
ho)$ degenerate $U(1)_A$: $(\pi, \ \delta)$ degenerate

Symmetry restoration and correlation functions

Thermodynamics with domain wall fermions, hotQCD, arXiv:0512xxxx

chiral flavor symmetry is restored at

$$T{\gtrsim}160~{
m MeV}$$

 $m_\pi \simeq 200~{
m MeV}$ no cont. extrap.

Chiral (flavor) symmetry restoration

- chiral flavor symmetry restored at T_c ;
- $U_A(1)$ stays broken, but is "effectively" restored at about $1.2T_c$

caveat: (i) calculation done with $m_\pi \simeq 200 {
m MeV}$

(ii) staggered fermions

What about UA(1) restoration?

Restoration of the axial symmetry

 $T < T_c$: broken chiral symmetry is reflected in the hadron spectrum

$$\chi_{5,\mathrm{con}} \quad \pi : \bar{\mathbf{q}} \gamma_{5} \frac{\tau}{2} \mathbf{q} \xrightarrow{\sigma} \bar{\mathbf{q}} \mathbf{q} \qquad \chi_{\mathrm{con}} + \chi_{\mathrm{disc}}$$

$$\downarrow \mathbf{U}(1)_{\mathrm{A}} \qquad \qquad \downarrow \mathbf{U}(1)_{\mathrm{A}} \qquad$$

$$T \geq T_c: SU(2)_L imes SU(2)_R$$
 restored $imes \chi_{5,con} = \chi_{con} + \chi_{disc}$ $U(1)_A$ restoration $\Leftrightarrow \chi_{disc} = 0$ $\Leftrightarrow G_\pi(x) - G_\sigma(x) = 0$

U(1)_A remains broken

the difference of the scalar and pseudo-scalar drops by an order of magnitude but stays non-zero

above Tc (but still for m>0):

$$rac{\chi_{\pi}-\chi_{\delta}}{T^2}=rac{\chi_{disc}}{T^2}=rac{\chi_{5,disc}}{T^2}>0$$

thermodynamics with domain wall fermions hotQCD, arXiv:0512.xxxx

U(1)_A remains broken

the difference of the scalar and pseudo-scalar drops by an order of magnitude but stays non-zero

non-zero differences are generated on configurations with non-zero topology

thermodynamics with domain wall fermions hotQCD, arXiv:0512.xxxx

Conclusions

- the "crossover transition" in QCD is sensitive to universal scaling properties of the second order phase transition in the chiral limit
- in the chiral limit taken at physical values of the strange quark mass the transition seems to be second order, belonging to the 3d, O(4) universality class; UA(1) remains broken at Tc
- the transition temperature and the freeze-out temperature agree within current statistical accuracy at zero and non-zero baryon chemical potential at least down to beam energies of 20GeV

O(N) scaling and the chiral transition

 \rightarrow In the vicinity of (t,h)=(0,0) the chiral order parameter and its susceptibility are given in terms of scaling functions

$$M = h^{1/\delta} f_G(z)$$
 ,

$$M=h^{1/\delta}f_G(z) \quad , \quad \chi_M=\partial M/\partial h=h^{1/\delta-1}f_\chi(z)$$

$$M=h^{1/2}f_{G}(z)$$
,

-4 -3 -2 -1 0

known from 3d O(N) spin model

J. Engels et al., 2001/2003

Energy density vs. quark number susceptibility

$$egin{array}{lll} rac{\epsilon}{T^4} &=& rac{1}{VT^3}rac{\partial \ln Z}{\partial T} \ &\sim & -h^{(1-lpha)}f_s'(z) \ && +rac{\partial f_r(T,V,ec{\mu})}{\partial T}igg|_{ec{\mu}=0} \end{array}$$

$$egin{align} \chi_2^B &= \left. rac{1}{V T^3} rac{\partial^2 \ln Z}{\partial (\mu_B/T)^2}
ight|_{\mu_B=0} \ &\sim \left. -h^{(1-lpha)} f_s'(z)
ight. \ &\left. + rac{\partial^2 f_r(T,V,ec{\mu})}{\partial (\mu_B/T)^2}
ight|_{ec{\mu}=0} \end{aligned}$$

The chiral phase transition

$$U_V(1) imes U_A(1) imes SU_L(n_f) imes SU_R(n_f)$$

$$\bar{\psi}\mathcal{M}\psi \sim \bar{\psi}_L \mathcal{D}_{\mu}\psi_L + \bar{\psi}_R \mathcal{D}_{\mu}\psi_R - m_q(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L)$$

chiral projection: $\psi = \psi_L + \psi_R$

$$P_{\epsilon} = rac{1}{2} \left(1 + \epsilon \gamma_5
ight) \; , \; \epsilon = \pm 1 \; , \; \; P_{\epsilon}^2 = P_{\epsilon} \; , \; P_{+} P_{-} = 0 \; .$$

$$\psi_L = P_+ \psi \;\;,\;\; \psi_R = P_- \psi$$

$$ar{\psi}_L = ar{\psi} P_- \;\; , \;\; ar{\psi}_R = ar{\psi} P_+$$

$$\bar{\psi}\psi = \bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L$$

mass term breaks left-right symmetry order parameter